skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dantam, Neil T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many robot tasks may involve achieving visibility (such as to observe areas of interest) or maintaining occlusion (such as to avoid disturbing other agents). We generally formulate such sequential visibility tasks for 3D worlds, termed the Park Rangers’ Problem, and we develop an approach to solve such tasks offering completeness under certain requirements. Our approach constructs an abstraction based on an exact test for visibility between areas, and multiple tests and relaxations for the nonconvex problem of determining occlusions between areas. We apply a constraint-based planning approach and iteratively refine the abstraction. Finally, we evaluate the approach on simulated visibility scenarios. 
    more » « less
  2. Sampling-based motion planning works well in many cases but is less effective if the configuration space has narrow passages. In this paper, we propose a learning-based strategy to sample in these narrow passages, which improves overall planning time. Our algorithm first learns from the configuration space planning graphs and then uses the learned information to effectively generate narrow passage samples. We perform experiments in various 6D and 7D scenes. The algorithm offers one order of magnitude speed-up compared to baseline planners in some of these scenes. 
    more » « less
  3. Using robots to collect data is an effective way to obtain information from the environment and communicate it to a static base station. Furthermore, robots have the capability to communicate with one another, potentially decreasing the time for data to reach the base station. We present a Mixed Integer Linear Program that reasons about discrete routing choices, continuous robot paths, and their effect on the latency of the data collection task. We analyze our formulation, discuss optimization challenges inherent to the data collection problem, and propose a factored formulation that finds optimal answers more efficiently. Our work is able to find paths that reduce latency by up to 101% compared to treating all robots independently in our tested scenarios. 
    more » « less
  4. Shell, Dylan A; Toussaint, Marc (Ed.)
    We present a learning-based approach to prove infeasibility of kinematic motion planning problems. Sampling-based motion planners are effective in high-dimensional spaces but are only probabilistically complete. Consequently, these planners cannot provide a definite answer if no plan exists, which is important for high-level scenarios, such as task-motion planning. We propose a combination of bidirectional sampling-based planning (such as RRT-connect) and machine learning to construct an infeasibility proof alongside the two search trees. An infeasibility proof is a closed manifold in the obstacle region of the configuration space that separates the start and goal into disconnected components of the free configuration space. We train the manifold using common machine learning techniques and then triangulate the manifold into a polytope to prove containment in the obstacle region. Under assumptions about learning hyper-parameters and robustness of configuration space optimization, the output is either an infeasibility proof or a motion plan. We demonstrate proof construction for 3-DOF and 4-DOF manipulators and show improvement over a previous algorithm. 
    more » « less
  5. Ang, Marcelo H.; Khatib, Oussama; Siciliano, Bruno; Kavraki, Lydia E (Ed.)
    Task and motion planning operates in a combined discrete and continuous space to find a sequence of high-level, discrete actions and corresponding low-level, continuous paths to go from an initial state to a goal state. 
    more » « less